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Abstract An adjoint design sensitivity analysis

method is developed for molecular dynamics using a

parallel computing scheme of spatial decomposition in

both response and design sensitivity analyses to

enhance the computational efficiency. Molecular

dynamics is a path-dependent transient dynamic

problem with many design variables of high nonlin-

earity. Adjoint variable method is not appropriate for

path-dependent problems but employed in this paper

since the path is readily available from response

analysis. The required adjoint system is derived as a

terminal value problem. To compute the interaction

forces between atoms in different spatial boxes, only

atomic positions in the neighboring boxes are required

to minimize the amount of data communications.

Through some numerical examples, the high nonlin-

earity of the selected design variables is discussed.

Also, the accuracy of the derived adjoint design

sensitivity is verified by comparing with finite differ-

ence sensitivity and the efficiency of parallel adjoint

variable method is demonstrated.

Keywords Adjoint design sensitivity analysis �
Molecular dynamics � Parallel computation �
Path-dependent problem � Terminal value

problem � Lennard–Jones potential

1 Introduction

Recently, nanotechnology is one of the emerging

research fields to describe the modern engineering

problems such as nanoscale sensors, ultra-strength

materials, drug delivery design, and so on. Therefore,

interest in considering the design in a microscopic

level is naturally increasing. The molecular dynamics

(MD) simulation that predicts the microscopic behav-

iors of materials is a promising tool that is able to

describe complex physical phenomena. However, a

vast amount of computation is required for the

transient dynamic analysis in atomic based simula-

tions. The MD simulations are computationally large

in both spatial and temporal domains. The length scale

for atomic coordinates is angstroms and many

thousands or millions of atoms must be simulated in
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three dimensions to obtain the desired complex

macroscopic phenomena. Also, the time step size is

constrained by the periodicity of atomic vibration.

This limits the unit of time steps to the femtosecond

scale and therefore tens or hundreds of thousands of

time steps are necessary to be evaluated for the real

time simulation. For computational efficiency, the MD

simulation is used only in the localized region of

interest whereas the continuum analysis is carried out

in the remaining region. Thus, using the MD simula-

tion and the continuum analysis, many researchers

have solved the problems of dislocation (Tadmor et al.

1996), crack propagation (Park et al. 2005; Farrell

et al. 2007), and strain localization (Kadowaki and Liu

2004). When it comes to the field of design optimi-

zation, finite difference sensitivity for the transient

dynamics is computationally costly but too inaccurate

to be used in the design optimization. Many research-

ers developed the algorithms of MD simulation in

parallel computing environment. Plimpton (Plimpton

1995) presented the parallel algorithms for short-range

interaction molecular dynamics. The parallel algo-

rithms for MD simulation are limited in the interaction

force ranges. Solids and liquids are often modeled by

using this short-range force only due to electronic

screening effects or to avoid the computational cost of

including long-range forces for simplicity.

The purpose of design sensitivity analysis (DSA) in

MD simulations is three folds; (1) Instead of using the

expensive first-principle quantum-mechanical (QM)

method, the sensitivities of atomic mass m and L–J

parameter �; r can be utilized to develop an empirical

interatomic potential. Related studies are found in

Mendelev et al. (2003). The design sensitivities of MD

simulation can be utilized for the validation of force

field parameters for the prediction of desired nano-

scale phenomena compared with experimental data.

(2) It can be utilized in the uncertainty quantification

of MD systems. Instead of the popular Monte Carlo

simulation that is a sampling-based approach for the

sensitivity, the accurate and efficient adjoint sensitiv-

ity can be employed. (3) Due to the huge costs for the

analysis of MD systems, the gradient-based approach

and parallel computation indispensable for the design

optimization of nanoscale materials, which are so far

not developed yet but essential for the future direction

of design optimization. In this paper, the parallel DSA

of MD system is studied as a pioneering research,

which can be later used to determine the optimal

morphology of molecular structures such as nanopar-

ticles for drug delivery, carbon nanotubes for material

design, and so on. Also, the design sensitivities of MD

simulation can be utilized for the validation of force

field parameters for the prediction of desired nano-

scale phenomena compared with experimental data.

Even though the MD is performed in parallel

computing environment, there still remain some

problems for the design sensitivity analysis (DSA) of

MD simulations. From the computational point of

view, the approximated DSA methods such as finite

difference method are impractical for the efficiency

and accuracy of design sensitivity since the MD

simulation usually includes many highly nonlinear

design parameters. Thus, very efficient analytical DSA

methods are indispensable for the design optimization

of MD systems using the MD simulations. The adjoint

variable method (AVM) for the transient dynamics is

well established and the corresponding adjoint system

turned out to be a terminal value problem (Choi and

Kim 2005). To recover the initial conditions correctly,

the invertibility of the MD problem is required to solve

the terminal value problem. Different from the notion

of reversibility, the meaning of invertibility is that the

evolution operator of dynamics has an inverse oper-

ator. Since the velocity Verlet algorithm is one of the

Verlet version integrators and is employed in this

research, the invertibility of the problem is guaranteed

during the time evolution of the MD system (Strogatz

1994; Tuckerman et al. 1992).

Dynamic problems require the time integration of

partial differential equations to compute dynamics

responses. For the DSA of dynamic problems, the

time-history of design sensitivity of state variables is

required to calculate the sensitivity at a given time t.

For such path dependent problems, the history of

design sensitivity over loading paths is needed up to

the load level at which the sensitivity is desired. The

response sensitivity at a given time and position

depends on both response and response sensitivities of

all the previous time steps and locations of the

structure. In other words, the exact paths of response

and its sensitivity are needed. Thus, the AVM is not

appropriate for path-dependent problems because each

adjoint solution yields the sensitivity of only one

performance measure, rather than the sensitivities of

the full response fields (Cho and Choi 2000a). For

transient dynamic problems with large deformation

elastic-plastic materials, an analytical DSA method
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(Cho and Choi 2000b) is developed in the updated

Lagrangian formulation using the direct differentia-

tion method (DDM). Hsieh and Arora (1984) devel-

oped DSA methods for the dynamic problems of

point-wise constraints; the DDM and the AVM were

used in their research. Tortorelli et al. (1989) derived

the design sensitivity for nonlinear transient thermal

systems, based on the adjoint approach using the

Lagrange multiplier method and the convolution

theory. Tsay and Arora (1990) derived nonlinear

DSA for path-dependent problems in the frame of total

Lagrangian formulation considering both geometrical

and material nonlinearities. Gao et al. (2008) per-

formed shape optimization for time-dependent Na-

vier–Stokes flows. They used the Piola transformation

to bypass the divergence-free condition for the shape

DSA. In the MD system in this paper, we kept only the

time history of kinematics for all the atoms since the

tangent stiffness can be easily recovered directly from

the original responses.

Extension of DSA methods to the atomic level

transient dynamics was never attempted due to the

limitation of computational resources and lack of

efficient DSA method even though the MD simula-

tions were already established. When the performance

measure is only dependent on the terminal time state

and the internal force term is linear with respect to the

displacement due to the harmonic approximation of

the inter-atomic potential, the adjoint equation of

motion can be independently solved from the original

system. In that case, there is an advantage of saving the

computational storage to keep the original response

history (Kim et al. 2013a, b) . In the case of non-linear

internal forces, however, the adjoint equations depend

on the path of original responses and thus the tangent

stiffness in the adjoint systems changes with each

time. In this case, the adjoint problem is time history

dependent, which means that we must follow all the

history of response analysis for solving that problem.

The remainder of this paper is organized as follows,

in Sect. 2, we review the MD theory, which includes

the discussion of equations of motion together with an

inter-atomic potential. In Sect. 3, we discuss the DSA

of MD, where both the DDM and the AVM are

considered. The AVM is effective especially for the

path-independent problems of many design variables

but the MD in this research is a path-dependent

problem. Thus a special treatment is required to apply

the AVM to the MD problems. Also, a parallel

computing scheme is introduced since a massive

computation is generally required in the MD simula-

tions. For computational efficiency, the parallel com-

puting based on the spatial decomposition method is

performed in both response analysis and the DSA. In

Sect. 4, we present demonstrative numerical exam-

ples, where the accuracy and efficiency of the derived

adjoint design sensitivity are discussed by comparing

them with the finite difference method (FDM), which

presents the importance of DSA in the MD simulations.

2 Review of molecular dynamics

2.1 Equations of motion

From the difference of kinetic energy and potential

energy, a Lagrangian is defined, in Cartesian co-

ordinates, as

L ¼ 1

2

XNa

i¼1

mi _ri � _ri � Uðr1; r2; . . .; rNa
Þ; ð1Þ

where ri ¼ ðxi; yi; ziÞ is the position vector of atom i in

3-dimensional space; the dot denotes time derivatives;

mi is the mass of atom i; U is an inter-atomic potential;

and Na is the total number of atoms. The following

Euler–Lagrange equations,

d

dt

oL

o _ri

� oL

ori

¼ 0; i ¼ 1; 2; . . .;Na; ð2Þ

lead to the equations of motion as

mi€ri ¼ �
oU r1; r2; . . .; rNa
ð Þ

ori

� f i; i ¼ 1; 2; . . .;Na;

ð3Þ

where f i is the internal force exerted on atom i.

2.2 Inter-atomic potential

To describe accurate atomic interactions within the

simulated system, we consider the subatomic nature of

complicated quantum effects that are responsible for

the bonding and breaking of atoms and the spatial

arrangement of atomic valence. For the reliable results

from MD simulations, the classical inter-atomic

potential should include these quantum mechanical

processes. A general structure of potential energy can

be expressed as
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Uðr1;r2; . . .rNÞ ¼
X

i

U1ðriÞ þ
X

i;j [ i

U2ðri; rjÞ

þ
X

i;j [ i;k [ j

U3ðri; rj; rkÞ þ � � �

ð4Þ

where Um is the m-body potential (Liu et al. 2006); the

first term is the potential energy due to the gravity and

the electrostatic force; the second term is due to the

pair-wise interactions of particles; and the third is due

to the three-body inter-atomic potential energy. Gen-

erally, the pair-wise interaction is employed, truncat-

ing the sum of Eq. (4) after the second term. Figure 1

shows the behavior of potential, its force, and the

derivative of force for a general Lenard–Jones (LJ)

potential. The potential is instead designed to include

the multi-body effects in the pair-wise potential U2.

In the crystalline solid structures, there is no

bonding between atoms and the motion of atoms

occurs near equilibrium position almost always. Thus,

we can use the harmonically approximated expression

of potential energy, by truncating the higher order

terms and using the Taylor expansion of potential

energy at equilibrium distance r ¼ r0, as

U rð Þ ffi Uh rð Þ ¼ 1

2
k r � r0ð Þ2 þ U r0ð Þ; ð5Þ

where k is the stiffness between the atoms. Black and

Bopp simulated the face centered cubic (FCC) metals

for obtaining surface mode frequencies (Black and

Bopp 1984). In their simulation, for the interactions

between metal molecules, a harmonically approxi-

mated potential is used only on the nearest neighbors.

Spohr and Heinzinger also used the harmonically

approximated potential for the metal-metal interac-

tions in their water/metal interaction simulation (Spo-

hr and Heinzinger 1986).

3 DSA of molecular dynamics

3.1 Time-reversal symmetry in dynamics systems

In the dynamic problems, an adjoint equation is

usually given as a terminal value problem and the

initial conditions can be recovered according to the

time reversibility of the system. A reversible system

(or time reversal symmetry) is defined as any second-

order system that is invariant under the reversed time

and velocity (t! �t and v! �v). Only the initial

conditions, not the equations, can differ in the

‘‘reversed flow’’ of the reversible system (Strogatz

1994; Lamb and Roberts 1998). To investigate the

characteristics of adjoint system in dynamics prob-

lems, consider a simple one-dimensional dynamic

system with initial conditions,

€u tð Þ þ au tð Þ ¼ 0; u 0ð Þ ¼ u0; _u 0ð Þ ¼ v0; 0� t� tT ;

ð6Þ

and a design sensitivity system with initial conditions,

Fig. 1 L–J potential (red), L–J force (green), and the derivative of force (blue). (Color figure online)
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€u0 tð Þ þ au0 tð Þ ¼ �a0u tð Þ;
u0 0ð Þ ¼ 0; _u0 0ð Þ ¼ 0; 0� t� tT :

ð7Þ

The system governed by Eq. (6) is conservative and

reversible. The design variable is a and the perfor-

mance measure is the displacement uðtTÞ at terminal

time. Figure 2(L) shows the phase trajectories of

original response, adjoint response, and the sensitivity

of the reversible system. In this case, u0 ¼ 1:0; v0 ¼
1:0; tT ¼ 50; 000Dt, and Dt ¼ 10�4. Since both origi-

nal and adjoint systems possess the time-reversal

symmetry, the trajectories of systems are symmetric

about u-axis. However, the sensitivity trajectory is not

symmetric due to the history-dependent force in the

sensitivity equation. Figure 2(R) shows the procedure

of solving the adjoint terminal value problem of the

reversible system, where the trajectory of adjoint

response is shown until the terminal time step of 4,000.

The red curve represents the actual trajectory of

adjoint response by solving the terminal value prob-

lem with kðtTÞ ¼ 0:0; _kðtTÞ ¼ �1:0. The blue curve

shows the trajectory of the adjoint response by solving

the initial value problem with kð0Þ ¼ 0:0; _kð0Þ ¼ 1:0.

In the trajectories of blue and red curves, since the

adjoint system is reversible, the histories of displace-

ment are identical but those of velocity are identical in

magnitude but different in sign. With the reversed sign

of adjoint velocity in the blue curve, the adjoint system

is regarded as an initial value problem. Figure 3 shows

the time histories of original and adjoint responses in

forward direction. The adjoint system is identical to

the original system except the initial conditions and

thus has the same frequencies.

3.2 Adjoint variable method

From Eq. (3) for MD systems, the equations of motion

can be written, in a matrix-vector form, as

MA bð Þ€u ¼ f b; uð Þ; ð8Þ

where MA, u, and b are the atomic mass matrix,

displacement vector, and design variable vector,

respectively. The term f b; uð Þ ¼ �oU b; uð Þ=ou is

the interaction force calculated from the potential

energy U b; uð Þ. Taking the first order variation of Eq.

(8) with respect to the design b leads to the following

design sensitivity equation

MAðbÞ€u0 �
of b;uð Þ

ou
u0 ¼ �oMAðbÞ

ob
db€uþ of b;uð Þ

ob
db

ð9Þ

Since the initial conditions are independent of design,

the corresponding initial conditions for the design

sensitivity are selected as

u0 0ð Þ ¼ _u0 0ð Þ ¼ 0 ð10Þ

For a general performance measure w that could

include both terminal value and time history quantity

for the MD system,

Fig. 2 Phase trajectories of original response, adjoint response, and sensitivity. (Color figure online)
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w ¼ g b; u; _uð Þjt¼tT
þ
ZtT

0

h b; u; _uð Þdt ð11Þ

taking the first order variation of Equation (11) with

respect to the design b and integrating the last term in

the integrand by parts lead to

w0 ¼ og

ob
dbþ og

ou
u0 þ og

o _u
_u0

� �����
t¼tT

þ
ZtT

0

oh

ob
dbþ oh

ou
u0 þ oh

o _u _u0

� �
dt

¼ og

ob
dbþ og

ou
þ oh

o _u

� �
u0 þ og

o _u
_u0

� �����
t¼tT

þ
ZtT

0

oh

ob
dbþ oh

ou
� d

dt

oh

o _u

� �
u0

� �
dt

ð12Þ

For the Lagrange multiplier function k, the equation of

motion should hold for all time spans.

ZtT

0

kT MAðbÞ€u� f b; uð Þð Þdt ¼ 0 ð13Þ

Assuming that the Lagrange multiplier function or

adjoint response k is independent of design b, the first

order variation of Eq. (13) is obtained as

ZtT

0

kT oMAðbÞ
ob

db€uþMAðbÞ€u0 �
of b; uð Þ

ob
db

�

� of b; uð Þ
ou

u0
�

dt ¼ 0 ð14Þ

Integration by parts and using the initial conditions

u0 0ð Þ ¼ _u0 0ð Þ ¼ 0, we obtain the following.

kT MA _u0 � _k
T
MAu0

� ����
t¼tT

þ
ZtT

0

€k
T
MA � kT of b; uð Þ

ou

� �
u0dt

¼ �
ZtT

0

kT oMA

ob
€u� of b; uð Þ

ob

� �
dbdt

ð15Þ

Comparing Eq. (15) with (12), an adjoint system is

defined as

MAðbÞ€k�
of b; uð Þ

ou
k ¼ oh

ou
� d

dt

oh

o _u

� �T

ð16Þ

where the corresponding terminal conditions are given

as

k tTð Þ¼M�1
A ðbÞ

og

o _u

T

and _k tTð Þ¼�M�1
A ðbÞ

og

ou
þoh

o _u

� �T

ð17Þ

Thus, the adjoint design sensitivity can be obtained by

using the analysis and adjoint responses,

Fig. 3 Original and adjoint responses: (L) displacement, (R) velocity. (Color figure online)
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w0 ¼ og

ob
db

����
t¼tT

þ
ZtT

0

oh

ob
� kT oMA

ob
€u� ofðb; uÞ

ob

� �� �
dbdt

ð18Þ

Thus, the design sensitivity of general performance

measure can be obtained using the original response in

Equation (8) and the adjoint response in Eq. (16) with

the terminal conditions of Eq. (17). In the MD system

in this paper, we kept only the time history of

kinematics for all the atoms since the tangent stiffness

can be easily recovered directly from the original

responses. For the time integration of adjoint system in

Eq. (16), we kept only the displacement u tð Þ and

velocity _u tð Þ histories of response. So that the tangent

of b; uð Þ=ou and adjoint load oh=ou� d=dtð Þ oh=ðð
o _uÞÞT in Eq. (16) are successfully recovered using the

saved displacement and velocity at every time step in

backward direction. Note that if the adjoint system is

reversible, we can obtain the adjoint response by time

integrating the adjoint system in forward direction by

changing the sign of the terminal velocity. Even if the

original MD system has time reversal symmetry, the

time reversibility of adjoint system is not related to the

reversibility of the original one but to the type of

performance measure.

3.3 Parallel computation

For short-range molecular dynamics, three parallel

algorithms are presented by Plimpton (1995). To each

processor, the atomic decomposition method assigns a

fixed subset of atoms; the force decomposition method

does a fixed subset of inter-atomic forces; and the

spatial decomposition method does a fixed spatial

region. The arithmetic and communication costs of

each method are listed in Table 1, where N and p

denote the numbers of atoms and processors,

respectively.

3.3.1 The spatial decomposition method

For the parallel processing of MD simulations with

short-range interactions, we generally employ the

spatial decomposition method such that a processor

has the position information of atoms in each spatial

box to evaluate the kinematics of atoms. Thus, the

interaction forces in each spatial box are easily

obtained from the position of internal atoms. Also, to

compute the interaction forces between atoms in

different spatial boxes, we need the position informa-

tion of atoms in nearby boxes which is readily

available.

In the MD simulations using the spatial decompo-

sition method, it is impossible to balance the number

of atoms and the computation loads in each processor

since some of the atoms could leave or enter the

processor. However, the spatial decomposition

method has advantage of reducing the communication

costs; it requires data communications with at most 26

neighboring processors in three-dimensional simula-

tion if the length of spatial box in each processor is

larger than the cut-off radius. For a single time step,

the algorithm is shown in Fig. 4. Step (1) sends the

kinematics and other identifying information for the

atoms leaving the box. Steps (1) (2) are processed at

the initial time-step but need not be done at each time-

step. Step (3) separately computes the forces at each

node, which do not require the communication of

force data and thus reduce the communication costs.

However, duplicated force computations could occur

at the atoms on the boundary of subdomain. Step (4)

updates the position information of atoms using the

obtained forces. Step (5) requires six communications

to obtain the position information of atoms in the

neighboring processors.

The communication scheme we use to acquire the

positions of neighboring atoms is illustrated in Fig. 5.

The data communication occurs in the horizontal

direction. If the length of box (L) is longer than the cut-

off radius (rc) for short range interactions, the

processor communicates with only one adjacent

processor. However, if L is smaller than rc, each

processor exchanges data with more than one adjacent

processor. Next, data exchanges in the vertical

Table 1 Comparison of parallel computation costs

Decomposition

method

Arithmetic

cost

Communication

cost

Atomic O N=pð Þ O Nð Þ
Force O N=pð Þ O N=

ffiffiffi
p
p
 �

Spatial O N=pð Þ O N=pð Þ
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direction occur in a similar way. Thus, for 3-dimen-

sional problems, we can complete all data exchanges

within just 6 data exchanges. More detailed algorithm

for the data exchanges can be referred in the reference

(Plimpton 1995). In this simulation, L is determined to

be larger than rc; rc\L. There are three advantages to

this scheme; first, when rc\L, the necessary positions

of atoms from all 26 surrounding boxes are efficiently

obtained in just 6 data exchanges; second, when

rc [ L, more distant boxes are necessary for the

position information of atoms but only a few extra data

exchanges are required; third, the amount of data

communicated is minimized as shown in Table 1.

For the design sensitivity analysis, the spatial

decomposition method is applicable and requires the

position and its sensitivity information from the

neighboring processors. Also, the same spatial decom-

position method as used in the MD simulation is

applicable for the MD simulation of adjoint system by

substituting the forces with the adjoint loads.

4 Numerical examples

The aim of this chapter is to verify the accuracy and

efficiency of the proposed adjoint DSA method. The

L–J 6–12 potential is employed for the interactions

between atoms as

U rð Þ ¼ 4e
r
r

� �12

� r
r

� �6
� �

; ð19Þ

where r ¼ ri � rj

�� �� and e is the energy depth which

shows the bonding/dislocation of particles; the work

required to be done in order to remove one of two

coupled atoms from its equilibrium position. This

means that the value of e is the minimum value of Eq.

(19). r is the collision diameter; the distance at which

U rð Þ ¼ 0 and related with the equilibrium bond

length. The equilibrium length is found such that the

following inter-atomic force is equal to zero. The

velocity Verlet algorithm is employed for the temporal

integration scheme since it can provide displacement

and velocity information at the same time.

Even though the atomic level simulation parameters

like atomic mass are not physically controllable, we

selected the parameters like atomic mass, energy depth,

and collision diameter as the design variables for the

purpose of what-if study. From the viewpoint of conver-

gence and efficiency in MD simulations, it is very

important to determine the appropriate size of time steps,

which is dependent upon the highest vibration period of

molecules or the material property. To ensure the stability

of numerical scheme, the size of time steps is usually

taken as 1 fs (Dt ¼ 10�3 ðpsÞ ¼ 1ðfsÞ) together with

some safety factors, which is explained in detail in the

reference (Leach 2001) For the parallel version of MD

simulation and DSA, the massage passing interface

(MPI) library is used. A cluster including 8 processors

of Intel Xeon 3.0 GHZ and 4 GB memory in each

node is used.

Fig. 4 Computing steps for a single time-step in spatial

decomposition

Fig. 5 Data exchange of all

atom positions in adjacent

boxes
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4.1 Efficient and accurate computation

of sensitivity

For the DSA of MD simulations, one of the big issues

is the efficiency of sensitivity computation. To inves-

tigate the relevant factors, consider an argon gas

model, whose simulation parameters are listed in

Table 2. The specification of computing hardware

includes 64bit Intel� QuadcoreTM(8 thread) i7 CPU

3.20 GHz with 24 GB memory. The MPICH is

employed as a parallel tool.

4.1.1 Cut-off radius for efficiency

We consider a simple model of relatively small size to

verify the derived adjoint sensitivity expression in

Eqs. (16)–(18) and to check if the communication

between nodes is working properly in parallel computing.

To make the problem as simple as possible, we consider a

simple cubic model of 512 argon atoms in Fig. 6., with all

the mathematical idealizations such as periodic boundary

condition and cut-off radius eliminated. The reference

step size for this MD simulation is Dt ¼ 10�3 ðpsÞ ¼
1ðfsÞ (Leach 2001). However, the step size is multi-

plied by a safety factor of 1=10 to ensure the numerical

stability of design sensitivity equation and the parallel

computing algorithm. The total number of time steps

is determined as 10,000. The atomic mass (m), energy

depth (e), and collision diameter (r) are selected as the

design variables (b). The amount of design perturba-

tion for the FDM is db ¼ 10�4 � b. In Table 3, the

analytical sensitivities by the DDM and AVM are

compared with the FDM at the time step of 10,000.

The lower and upper rows in each design variable

correspond to the results with and without considering

the cut-off radius (2:5r), respectively. Although the

cut-off radius is introduced, it turns out that the

sensitivity agreements are still very good. The com-

putation of inter-atomic forces from the L–J potential

is the most time-consuming process. If the number of

atoms is equal to N and the cut-off radius is not

considered, N N � 1ð Þ=2 computations are required.

Using the L–J potential in Eq. (19), the inter-atomic

force for i-th atom is computed as

fAnalysis
i ¼ oU rð Þ

ori

¼
X

j6¼i

24e
r2

2
r
rij

� �14

� r
rij

� �8
( )

� rij:

ð20Þ

For the DDM, the right-hand side of the sensitivity

equation in Eq. (9) is computed as

For the AVM, the adjoint load in Eq. (16) is computed

as

fDDM
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Therefore, if the cut-off radius is not used, the DDM

requires significant computing costs. When the cut-off

radius is not considered, the analytical sensitivities

show excellent agreements but require more compu-

tation time than the finite difference sensitivity as

shown in Table 4. In the problem of small design

variables (3 in this example), the FDM turns out to be

more efficient. When the cut-off radius (rc ¼ 2:5r) is

considered, however, the time for analysis (Analysis,

FDM) is significantly reduced by 60 % of the original

analysis time. The time for analytical sensitivities

(DDM, AVM) is much more reduced by 85 %.

4.1.2 High nonlinearity of design variables

The argon gas model in Fig. 7 is initially a simple cubic

structure consisting of 10,648 atoms with 31,944 DOFs.

Using the step size of time Dt ¼ 10�3 ðpsÞ, the dynamic

system is integrated during 10,000 time steps and the

diffusion phenomenon due to the initial room temper-

ature is successfully simulated as shown in Fig. 7.

The computational costs for MD simulation, DDM,

and AVM are compared according to the number of

processors in parallel computing environment as

shown in Fig. 8. All the costs are normalized by the

MD simulation time with a single processor (182

minutes). When eight processors are used for the MD

simulation and the DSA, the computational costs are

reduced to 1=4 of the cost when using a single

processor. Consider the diffusivity as a performance

measure at terminal time.

w ¼ D u; _uð Þ ¼ 1

6NA

d

dt
uT u

 �����

t¼tT

¼ 1

3NA

uT _u
��
t¼tT

:

ð23Þ

The mass of all atoms m, energy depth e, and collision

diameter r are selected as the design variables. The

amount of design perturbation for the FDM is

db ¼ 10�9 � b. To demonstrate the accuracy of ana-

lytical DSA method, we compared the sensitivities

obtained from FDM (a), DDM (b), and AVM (c) as

shown in Table 5. The upper, middle, and lower rows

in each design variable correspond to the results at the

time steps of 100, 1,000, and 10,000, respectively.

Compared with the FDM, the analytical DSA methods

yield very accurate results. Even though the perturba-

tion amount is 10�7 % of initial design, the agreement

Table 2 Simulation parameters

Density q 1:428 g=cm2ð Þ
Initial temperature T0 180 Kð Þ
Energy depth e 1:656� 10�3 aJð Þ
Collision diameter r 0:3405 nmð Þ
Atomic mass m 66:34� 10�3 ykgð Þ
Cut-off radius rc 2:5 r

Fig. 6 Initial position of argon atoms

Table 3 Comparison of various sensitivity results

DV (a) FDM (b) DDM (c) AVM ðbÞ=ðaÞ � 100 % ðcÞ=ðaÞ � 100 % ðcÞ=ðbÞ � 100%

m 1:137764E� 01

1:042371E� 01

1:137834E� 01

1:046488E� 01

1:137834E� 01

1:046488E� 01

100:006

100:395

100:006

100:395

100:000

100:000

e �4:563737Eþ 00

�4:160074Eþ 00

�4:563915Eþ 00

�4:197521Eþ 00

�4:563915Eþ 00

�4:197521Eþ 00

100:004

100:900

100:004

100:900

100:000

100:000

r 3:813301E� 01

4:319947E� 01

3:805748E� 01

4:226014E� 01

3:805748E� 01

4:226014E� 01

99:802

97:826

99:802

97:826

100:000

100:000
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between the analytical and the numerical sensitivities

of collision diameter r gets slightly worse as the

terminal time increases. This is due to the high

nonlinearity of L-J parameter r in Eq. (16) with

respect to the response as well as the design. To

investigate the nonlinearity of the design variables,

consider the performance measure of time-averaged

temperature which is given as

w ¼ 1

tT

ZtT

0

m _uðtÞT _uðtÞ
Ndof � Na � kB

 !
dt; ð24Þ

where Ndof ; Na, and kB are the number of DOFs per

atom, the number of atoms, and Bolzman constant,

respectively. The following L–J potential and har-

monic potential are used.

ULJ rð Þ ¼ 4e
r
r

� �12

� r
r

� �6
� �

;

Uh ¼ ULJ r0ð Þ þ
18

ffiffiffi
43
p

e
r2

r � r0ð Þ2: ð25Þ

In this numerical test, we concentrate only on the

accuracy of analytical sensitivity for highly nonlinear

design variables. The step size of time is sufficiently

reduced to Dt ¼ 10�5 to prevent possible numerical

instability. The dynamic system is integrated for 200

time steps. The collision diameter r is selected as a

design variable. Figure 9 shows the percentage dif-

ference between the FDM and DDM results according

to the variation of perturbation amount in FDM. The

harmonic potential is less dependent on the

Table 4 Comparison of computation time (tT ¼ 10; 000Dt)

Method No cut-off radius Cut-off radius

Time Normalized Time Normalized Reduction (%)

Analysis 259.217 1.00 104.0215 1.00 59.87

DDM 3790.659 14.62 555.7848 5.34 85.34

AVM 1351.722 5.21 206.7793 1.99 84.70

FDM 763.077 2.94 309.9272 2.98 59.38

Fig. 7 Simulation of argon gas diffusion

Fig. 8 Reduction of computational costs. (Color figure online)
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perturbation amount than the L–J potential. The finite

difference sensitivity changes significantly depending

on the design perturbation amount as shown in Table 6

when the system is integrated up to 1,000 time steps.

Since the potential we employ is highly nonlinear with

respect to the collision diameter in the Eq. (25),

perturbation that is either too big or too small could

cause inaccurate sensitivity for the FDM. These results

show that the analytical DSA methods are indispens-

able in MD simulations.

4.2 Nano film subjected to impulsive

displacement

Consider a thin film consisting of NDV layers, which

is subjected to an impulse of v0 ¼ 10 ðnm=psÞ as

Fig. 9 Linearity test for

FDM using various

potentials. (Color figure

online)

Table 5 Comparison of sensitivities at time steps of tT ¼ 100Dt; 1000Dt; 10000Dt

DV (a) FDM (b) DDM (c) AVM ðcÞ=ðaÞ � 100%

m 1.423496E-02 1.423599E-02 1.423599E-02 100.007

3.942760E-02 3.944201E-02 3.944201E-02 100.037

-1.484524E?03 -1.476054E?03 -1.476054E?03 99.429

e -5.709744E-01 -5.709737E-01 -5.709737E-01 100.000

-1.581463E?00 -1.581463E?00 -1.581463E?00 100.000

5.888401E?04 5.921489E?04 5.921489E?04 100.562

r -4.038140E-02 -4.038140E-02 -4.038140E-02 100.000

2.451670E-01 2.451669E-01 2.451669E-01 100.000

6.511735E?03 7.235908E?03 7.235908E?03 111.121

Table 6 Linearity test for FDM with respect to perturbation amount

d r=r (a)FDM (b)DDM (c)AVM ðbÞ=ðaÞ � 100 % ðcÞ=ðaÞ � 100 %

1.00E-02 2.146732E?03 83.629 83.632

1.00E-04 1.860049E?03 96.519 96.522

1.00E-06 1.859400E?03 96.553 96.555

1.00E-08 1.883083E?03 1.795298E?03 1.795351E?03 95.338 95.341

1.00E-10 1.795296E?03 100.000 100.003

1.00E-12 1.794449E?03 100.047 100.050

1.00E-14 1.702798E?03 105.432 105.435
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shown in Fig. 10. We assumed that the atoms on each

layer have the same mass that is selected as a design

variable. In this example, the number of atoms and

design variables are 102,400 and 8, respectively. The

FCC structured model consists of 40� 20� 4 unit

cells (102,400 atoms and 307,200 DOFs). The length

of unit cell is about 1:5874 ðnmÞ. Both x-directional

ends are gripped and the initial temperature of T0 ¼
0 ðKÞ is used. The cut-off radius is set to rc ¼ 1:5r0,

where r0 is the equilibrium distance. For the simplicity

of problem, the simulation parameters such as m; e; r
are equally set to 1.0. All the artificial simulation

parameters used in this example are identical to those

used for the FCC crystal in the reference (Park et al.

2005). Thus, the size of time step is determined as

Dt ¼ 10�2 ðpsÞ. The norm of atomic displacement

vector from the MD simulation is contoured in

Fig. 11. Due to the impulse and the gripped boundary,

the displacement wave is oscillating.

Consider the kinetic energy of thin film at terminal

time of tT ¼ 500Dt as a performance measure.

w ¼ 1

2
_uTMA bð Þ _u

����
t¼tT

ð26Þ

The analytical sensitivities obtained from the DDM

using Eq. (9) and the AVM using Eq. (18) are

compared in Table 7, where excellent agreements

are observed for all the design variables. Also,

additional computing costs required for the computa-

tion of analytical design sensitivities are listed in

Table 8. For 8 design variables, the AVM requires

Fig. 10 Thin film of layers subjected to impulse

Fig. 11 Displacement contour of thin film problem. (Color figure online)

Adjoint design sensitivity analysis 391

123



only 1.16 times of analysis time whereas the DDM

needs 8.72 times. Hence, for the design problems of

many design variables, the AVM is more efficient than

the DDM.

4.3 Dynamic crack propagation

Consider the MD simulation for the dynamic crack

propagation of general FCC solid structures presented

by Liu et al. (2006). The purpose is to demonstrate the

efficiency of the proposed adjoint DSA method for the

problem that has many design variables. The problem

definition of dynamic crack propagation is illustrated

in Fig. 12. A pre-crack is positioned in the center of

FCC structure by eliminating the atoms in the dark

gray region. The LJ 6-12 potential is utilized and the

crack opens due to the constant velocity imposed on

the top and bottom planes. The constant velocity is

taken as _uc tð Þ ¼ 0:5 ðnm=psÞ. The cut-off radius is

determined as rc ¼ 1:5r0 and the simulation parame-

ters such r; e, and all atomic masses are taken to be

unity. The MD simulation includes 255, 424 atoms

under the condition of nearest-neighbor interaction

only. The step size of time is Dt ¼ 10�2 ðpsÞ as used in

the previous example and the terminal time is

tT ¼ 1; 000Dt. The time history of crack propagation

simulation is shown in Fig. 13, where the only atoms

that have potential energy greater than 80 percent of

the equilibrium value are contoured in Fig. 13. This

technique is utilized to highlight the defective parts of

lattice as the crack propagates. Notice that the

potential energies of atoms near the pre-crack become

larger as the crack propagates.

Consider the performance measure of potential

energy summed over all atomic bond pairs at terminal

time.

w¼U b;uð Þ ¼
X

i6¼j

4e
r

rij uð Þ

� �12

� r
rij uð Þ

� �6
 !�����

t¼tT

;

ð27Þ

where the total number of atoms is Na ¼ 255;424.

Design variables are the mass of each atom except

atomic mass on the boundary. Thus, the total number

of design variables is 249,024. The adjoint DSA

Table 7 Comparison of analytical design sensitivities

DV (a) FDM (b) AVM ðbÞ=ðaÞ � 100 %

b1 7.168300E?01 7.168300E?01 100.000

b2 -1.102679E?03 -1.102679E?03 100.000

b3 -7.245345E?02 -7.245345E?02 100.000

b4 -1.557312E?03 -1.557312E?03 100.000

b5 6.936290E?01 6.936290E?01 100.000

b6 -1.115642E?03 -1.115642E?03 100.000

b7 -7.687209E?02 -7.687209E?02 100.000

b8 -1.772634E?03 -1.772634E?03 100.000

Table 8 Additional computation time

Analysis DDM AVM

Time (s) 11457.63 99919.35 13365

Normalized 1.0000 8.7208 1.1665

Fig. 12 Problem definition of dynamic crack propagation
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results are shown in Fig. 14, where some highly

sensitive atoms are plotted for visualization purpose.

High sensitivity is observed at the atoms where the

bond breaks as crack propagates. Required computa-

tional costs for the MD simulation, AVM, and FDM

are listed in Table 9. About 1.1 times of MD

simulation time is additionally required to obtain the

adjoint sensitivities with respect to 0.25 million design

variables. If the FDM is employed, about 3,000 years

are additionally necessary to obtain the equivalent

sensitivities. Even though the AVM requires more

storage space to keep all the time history of solutions,

Fig. 13 Analysis results for 3D MD crack propagation. (Color figure online)

Fig. 14 Contour of selected atoms whose design sensitivity is greater than (L: 10, R: 50). (Color figure online)
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the AVM is appropriate and indispensable in the DSA

of MD systems that include a huge number of design

variables.

5 Conclusions

In the parallel computation environment, a DSA

method for MD simulations is developed using the

adjoint approach. To overcome the difficulty of

computational costs, a spatial decomposition method

is used for the original response as well as the

sensitivity analyses in parallel computation. Assigning

each processor a fixed spatial region and exchanging

data using the known atomic positions, the commu-

nication cost is minimized compared with other

parallel computing algorithms such as the atomic

and the force decomposition methods. Numerical

implementation demonstrates that the developed

adjoint DSA method is not only accurate for highly

nonlinear design problems but also very efficient for

large scale problems. The developed adjoint DSA

method for MD simulations is applicable for emerging

nanotechnology problems such as the design of

nanoparticles, nanoscale sensors, ultra-strength mate-

rials, drug delivery matter, and so on.
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